Experimental modal analysis of lithium-ion pouch cells

نویسندگان

  • James Michael Hooper
  • James Marco
چکیده

If future electric and hybrid electric vehicle batteries are to be designed such that the impact of vibration induced resonance is minimized, engineers tasked with the design of the vehicle's energy storage system must have a rigorous understanding of key system attributes such as the natural frequencies of the cell, the level of damping present and the mode shapes induced within the battery under mechanical load. This paper describes the underpinning theory and experimental method employed when using the impulse excitation technique to quantify the natural frequencies and mode shapes of a commercially available 25 Ah Nickel Manganese Cobalt Oxide (NMC) Laminate Pouch Cell. Experimental results are presented for fifteen cells at five different values of state of charge (SOC). The results indicate that irrespective of the energy content within the cell, the same four modes of vibration (torsion and bending) exist within a frequency range of 191 Hze360 Hz. This is above the frequency range (0e150 Hz) typically associated with road-induced vibration. The results also indicate that the cell's natural frequencies of vibration and damping do not vary with changing values of SOC. © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stress evolution and capacity fade in constrained lithium-ion pouch cells

The effects of mechanical stress on lithium-ion battery life are investigated by monitoring the stack pressure and capacity of constrained commercial lithium-ion pouch cells during cycling. Stack stress is found to be a dynamic quantity, fluctuating with charge/discharge and gradually increasing irreversibly over long times with cycling. Variations in initial stack pressure, an important contro...

متن کامل

Synthesis of Lithium Ion Sieve Nanoparticles and Optimizing Uptake Capacity by Taguchi Method

Spinel-type of MnO2 nanoparticles which successfully synthesized by a hydrothermal process, have a required capacity for lithium uptake from liquid resources. Themost lithium adsorption capacity of 6.6 mmol/g of up to now was found to be an important limiting parameter for industrial applications. Therefore, increasing uptake capacity of these ion sieve...

متن کامل

A new method for quantitative marking of deposited lithium by chemical treatment on graphite anodes in lithium-ion cells.

A novel approach for the marking of deposited lithium on graphite anodes from large automotive lithium-ion cells (≥6 Ah) is presented. Graphite anode samples were extracted from two different formats (cylindrical and pouch cells) of pristine and differently aged lithium-ion cells. The samples present a variety of anodes with various states of lithium deposition (also known as plating). A chemic...

متن کامل

Surface temperature evolution and the location of maximum and average surface temperature of a lithium-ion pouch cell under variable load profiles

This experimental work attempts to determine the surface temperature evolution of large (20 Ah-rated capacity) commercial Lithium-Ion pouch cells for the application of rechargeable energy storage of plug in hybrid electric vehicles and electric vehicles. The cathode of the cells is nickel, manganese and cobalt (NMC) based and the anode is graphite based. In order to measure the surface tempera...

متن کامل

Electrode Materials for Lithium Ion Batteries: A Review

Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015